
GLOBAL GENE EXPRESSION ANALYSIS TO UNAMBIGUOUSLY IDENTIFY HOST GENE RESPONSES  
CHARACTERISTIC OF EXPOSRE TO BIOTHREAT AGENTS 

 
 

Rasha Hammamieh* and Marti Jett 
Molecular Pathology, Walter Reed Army Institute of Research, Silver Spring, MD 20910 

 
  

ABSTRACT 
We are studying the complex interaction between various 
biological pathogens and the host to understand the basis 
infectious or biothreat-induced diseases and to identify 
host defense strategies and the mechanisms by which 
they are regulated.  Although gene response profiles 
show unique signatures quite rapidly after exposure, they 
also have the potential to reveal phases of progression of 
illness to a) provide stage-specific diagnosis and b) 
identification of potential molecular targets for stage-
appropriate therapeutic interventions for intractable 
illness induced by unconventional pathogenic agents.   
  
For this approach, several issues required prompt solu-
tions including a) establishment of a baseline for “normal 
& healthy” individuals b) ability to fill in the gaps inher-
ent in vivo studies with in vitro findings c) differentiating 
biothreat induced flu-like illness from flu or other 
common illness d) harnessing the power of prior knowl-
edge to correlate with the global gene responses, e) as 
well as certain other factors.    
 
We have used a library of 20,000 human cDNA (~10,000 
are known genes) to construct customized microarray 
chips used in these studies.   We determined gene 
expression in human peripheral blood mononuclear cells 
(PBMC) in response to 15 pathogens at different time 
points in vitro (3-5 replicates). This provided a frame-
work for us to then utilize responses in animal models 
that closely imitate the illness as it occurs in humans. For 
those studies, PBMC or whole blood were collected at 
various time points post exposure to track the primary, 
secondary and subsequent gene responses elicited by the 
pathogenic agents.  The massive amounts of data are 
overwhelming but provide an incredibly rich source for 
both diagnostic and therapeutic approaches.  

 
The scientific community has realized the potential of 
these massive studies.  Clever, far-reaching data mining 
approaches have been devised which we have utilized.  
Of necessity, we developed and customized certain soft-
ware ourselves including a MIAME compliant relational 
database that integrates with external databases such as 
PubMed, LocusLink, GeneCard, Hugo gene ontology 
database and Biocarta and KEGG pathway databases.   
The links are invaluable in data mining and evaluating 
host response to various pathogens.   We have also de-
veloped a word-search clustering software that automati-
cally searches PubMed for up to 200 genes at a time 

seeking documentation of physiologic function to 
explain stage-specific clinical/pathological observations.  
 
 This information is aimed at diagnosis, predicting the 
course of impending illness and identifying appropriate 
therapeutic targets at different stages.  A most critical 
aspect is to minimize interpretation difficulties by estab-
lishing pathogen-specific signatures that can be readily 
distinguished from “normal /healthy baseline” profiles or 
common illnesses with similar initial symptoms.  There-
fore, we analyzed data (obtained over ~4 years) from 75 
healthy donor “control” samples of different ethnicity, 
sex and age range of 18-36 years.   
 
Microarray gene expression data were analyzed for the 
control samples to create a base line for gene expression 
to be used in our studies. For this purpose, we especially 
focused on genes that were expressed at approximately 
baseline levels (barely detectable) in the 75 control sam-
ples and exhibited high expression upon exposure to at 
least one pathogen.  Out of these low-expression genes in 
samples from healthy controls, we identified those that 
became overexpressed upon exposure to various 
pathogens.  From these genes, pathogen-unique patterns 
were found, even at early time points.  We are evaluating 
devices that permit rapid hybridization/testing on 
inexpensive platforms that could be used for wide-spread 
screening in event of suspected exposure to 
unconventional pathogens to differentiate from common 
infectious illnesses. 
 
We have identified host gene expression patterns that can 
discriminate exposure to various biological threat agents. 
Each of these gene patterns regulated by a specific agent 
reveals the cascade of events that occurs after the host 
encounters a pathogenic agent. Even though these 
pathogens initially cause similar symptoms, such as 
malaise, fever, headache, and cough, the course of illness 
induced by each of them differs in time frame of illness 
patterns. Using these signature gene profiles to assess 
possible exposure to pathogenic agents or to differentiate 
them from non lethal illnesses when the classical 
identification of a pathogen is not conclusive may fill a 
gap in the arsenal of diagnostic tools. Rapid detection, 
before the symptoms appear or even at various stages of 
illness, offers the opportunity to initiate appropriate 
treatment. Furthermore, this technique may provide the 
means to identify new therapeutic approaches to amelio-
rate the devastating results of these pathogens. 
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1. INTRODUCTION 
 

Preparations for the Army of the future include 
reliance on high technology instrumentation for 
diagnostic and therapeutic approaches.  This highly 
sophisticated hardware requires extensive computational 
capabilities and will have the potential to provide a 
wealth of important information to assist in keeping the 
warfighter healthy and ready for action.  The physical 
circumstances that can exist in various theaters of 
combat could result in exposure of the warfighter to 
unusual endemic pathogenic agents or environmental 
toxins not previously encountered.  In addition, 
deliberate biological threat exposure must be 
differentiated from illness induced by common 
pathogenic agents.   
 

For the Army of the future, various devices are 
under development for real-time determination of easily 
measurable vital signs and other clinical parameters.   
Due to the above-mentioned hazards in remote places 
where troops may need to carry out their mission, rapid 
determination could be critical to differentiate the urgent 
medical condition that would result due to biothreat 
exposure vs common flu-like illness or endemic non-
lethal pathogen.  We have a vision to address this 
scenario and the eventual aim would be to utilize host 
gene expression responses to biothreat pathogenic agents 
to differentiate them from common flu-like illnesses.     
The advantage of relying on host gene expression rather 
than direct pathogen identification, is that in a few drops 
of blood (sufficient for gene analysis) are hundreds of 
thousands of lymphocytes that have coursed through 
even remote areas of the body (lungs, lymph nodes, liver, 
etc) searching for “invaders”.  During this 
reconnaissance role, when these cells find a pathogen 
they react to neutralize it, creating a record (unique to 
each pathogen) of the encounter in their messenger(m) 
RNA.  As a result, the host gene expression response can 
be determined very early, or even at any time post-
exposure.  In fact, for exposure to one biothreat toxin, a 
unique signature is observed by at least 30 min post-
exposure in non-human primates (NHP), yet the initial 
onset of illness did not occur until 4 h post exposure.  For 
one bacterial infection, Actinobacillus pleuropneumoniae 
in swine, we have seen unique gene signatures with in 2 
h although onset of even mild malaise did not occur until 
~10 h.  However, it is not just very early detection that 
can be carried out using host gene expression responses, 
for we observe that there are stage-specific host 
responses that can define the “course of impending 
illness”.    
 

We are currently creating a library of host gene 
expression responses to biothreat and certain common 
pathogenic agents.  This process utilizes the massive 
gene chips that interrogate 20,000 (cDNA) or 40,0000 

(oligonucleotides) genes.  However, our eventual plan is 
to select sets of genes that can be used as signatures from 
the library of host responses and proceed to utilize small 
“macroarray” chips containing these carefully selected 
sets of genes that would differentiate among many 
common vs biothreat pathogenic agents.  Many 
commercial efforts are underway to construct such small 
devices (even hand-held instruments) that can directly 
use the small sample without derivatization, and utilizes 
technology for “instant hybridization”.  Some current 
approaches even use RNA directly rather than 
conversion to cDNA, as is the usual custom for 
microarrays.  In general, the technology that is currently 
under development for such devices offers potential for 
revolutionary measures to use for not just detection of 
exposure to pathogenic agents but also to design 
treatment regimens that are tailored to the stage of 
advancement of the illness and can meet needs of the 
individual warfighter.   

 
 

2. EXPERIMENTAL APPROACH 
 
In these studies, we are creating a library of 

gene expression responses in peripheral blood 
mononuclear cells (from exposures in vitro and for some 
pathogens, in vivo as well) to anthrax, brucella, dengue, 
cholera, plague, staphylococcal enterotoxins (SE), and 
other biological threat and common pathogenic agents 
using up to 20,000 cDNA gene microarrays.  The cDNAs 
are maintained by us and commercially printed onto 
microscope slides at 10,000 genes per slide.   
 
2.1  Description of the system.   
 

Our system permits 2-color competitive 
hybridization and we have utilized that by comparing all 
samples to a “universal reference RNA standard” 
(Strategene).  In essence, the reference RNA is 
flluorescently labeled with Cy 3 and separately the 
sample from pathogen exposure is labeled with Cy 5 
(and visa versa).  In this way, every sample used is 
compared to the exact same RNA; that has the advantage 
to normalize the inevitable variations that occur from 
year to year, with different personnel carrying out the 
techniques and variations that may occur among batches 
of microarray chips.  Experiments were carried out in 
replicates at each time point for each pathogen using the 
cDNA microarrays.  
 
2.2  Initial Image acquision and data processing. 
 
Images of the array slides are acquired and processed to 
produce a data file that contains thousands of values for 
each experiment.  We have used Axon’s GenePix 
scanner and software for microarray data visualization 



and interpretation.   Results were then confirmed using 
real time Rt-PCR. 

 
We used the reference design where a reference RNA 
sample is co-hybridized with each sample on the slide.  
This design allows us to normalize between the slide for 
variations that can be due to hybridization, transcription 
and labeling efficiencies (technical variations).  We used 
various modules to analyze the microarray data including 
GeneSpring, Partek Pro, SAM and Bioconductor.  Using 
Analysis of Variance (ANOVA) we determined genes 
that exhibited variations in expression between the 
control samples. These variations may be due to many 
factors including biological and technical variations.  
These normally varying genes are excluded from further 
analysis to study gene regulation upon exposure to 
pathogens. GeneSpring microarray data analysis 
software was used for data analysis, gene clustering, 
studying patterns of gene expression and exploration of 
pathways altered by each pathogen.  
. 
2.3  “Project Normal” for Healthy Humans 
 
We created a base line for gene expression in PBMC 
obtained from 75 healthy donor “control” samples of 
different ethnicity (African American> Hispanic . 
Caucasian >> Asian descent), sex and age range of 18-36 
years.  We analyzed gene expression data for the control 
samples to identify genes that were normally varying 
among healthy humans of diverse ethnicity.  These genes 
were excluded from further analysis since their 
expression was so inconstant among these individuals. 
We were interested in finding genes that can be used as 
markers for an exposure in the case of an outbreak where 
controls are hard to identify. 
 
2.4  Minimizing ambiguity:  Selection of off/on genes.  
 
We selected genes that were expressed at near baseline 
levels (barely detectable) in the 75 control samples and 
were highly expressed upon exposure to at least one 
pathogen (off-on regulated genes).  Out of these genes 
that were expressed near the baseline levels in all control 
samples and were shown to be highly expressed upon 
exposure to various pathogens, sets of genes were unique 
for certain pathogens at early time points.  Conversely, 
we also determined genes that were highly expressed in 
all the control samples and were barely detectable upon 
exposure to a certain pathogen. We confirmed our results 
using real time-PCR.  These genes have the potential to 
be diagnostic markers for exposure to a specific 
pathogenic agent.    

 
2.5 Development of new techniques for data mining 
 
We also developed a word search and clustering software 
called GeneCite to do multiple queries searching the 

PubMed literature database.  This program provide 
PubMed search for 200 genes at a time and gives a score 
to gene relatedness in the literature.  This software 
provides a fast tool for data mining and gene regulation 
studies.  
 
Another tool we developed is called PathwayScreen and 
is used to screen a list of genes of interest against a 
pathway database to resolve pathway regulated by 
certain treatment.  This tool offers a fast and high 
throughput pathway analysis for microarray data. 
 
 

3. RESULTS AND DISCUSSION 
 

When we evaluate various biological warfare 
pathogens at different time point, the massive amount of 
data is overwhelming and it is a very important source 
for both diagnostic and therapeutic approaches.  
 

We have utilized many software packages and 
developed some of our own as well for microarray data 
evaluation.  We have developed a relational database 
software package that tracks all information required 
about each sample and experiment.  Using this relational 
database, we are able to get information about alteration 
in expression of genes of interest or a specific pathway 
by one or more pathogen and to find genes unique for 
each pathogen. Furthermore, this database is linked to 
external databases such as PubMed, LocusLink, 
GeneCard, Hugo gene ontology database and Biocarta 
and KEGG pathway databases. 
 

We have applied various clustering techniques 
to group genes with similar expression patterns or 
functions.  Most cluster analysis methods are 
hierarchical; the resultant classification has an increasing 
number of nested classes and the result resembles a 
phylogenetic classification.  Non-hierarchical clustering 
analyses are also used, such as K-means clustering and 
self-organizing method (SOM), which partition genes 
into different clusters without specifying the relationship 
between individual elements. 
 
3.1  Project Normal:  Baseline gene expression 
 
This information is aimed at diagnosis, predicting the 
course of impending illness and identifying appropriate 
therapeutic targets at different stages.  A most critical 
aspect is to minimize interpretation difficulties by 
establishing pathogen-specific signatures that can be 
readily distinguished from “normal /healthy baseline” 
profiles.  Therefore, we analyzed data (obtained over ~2  
years) from 75 healthy donor “control” samples of 
different ethnicity, sex and age range of 18-36 years.  
We found that <10% of the total number of the genes on 
the arrays exhibited variation in expression between the 



slides.   These genes were eliminated from further 
analysis for genes regulated upon exposure to the 
pathogens (Fig.1).   

 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Three dimensional scatter plot for the first 
three principal components of a PCA analysis.  The 
genes represented by the clusters at the left side of the 
graph, were expressed universally among the 75 people 
who comprised various groups of diverse, healthy 
individuals.  Genes that are normally varying between 
the slides are plotted in green (right side of graph).  
 
3.2  Host responses upon pathogen exposure 
 
Exposure to pathogen was carried out using parallel 
PBMC from the healthy donors (Fig 1) in which one 
group of samples were exposed to the pathogen and the 
other used as a control.  Relative to the control 
(harvested at the same time as the “post-exposure” 
sample) the changes in each gene was catalogued and the 
dendrogram (Figure 2) constructed.  There were at least 
3 replicates of each exposure and the aim was that these 
be from different people in order to identify any gene 
responses that could be due to some unique aspect of one 
specific individual.  For preparation of the dendrogram, 
the only consistent changes among the individuals was 
recorded.   
 
3.3  Minimizing ambiguity by selection of off/on genes 
 
We especially focused on genes that were expressed at 
baseline (barely detectable) levels in the 75 control 
samples and overexpressed upon exposure to at least one 
pathogen.  There are many fascinating scenarios, such as 
highly expressed CD markers in control cells that simply 
disappear upon pathogen exposure.  Some of this may be 
due to sequestration of subsets of cells, a phenomenon 
that has previously been described as a “signature” for 
certain of the biothreat toxins (SEB, for example).  
Figure 3 shows the genes, relative to Figure 2 that are 
essentially turned “ON” upon exposure to each of the 
pathogenic agents.   

 
Figure 2.   
1         2         3     4        5       6         7          8   
Anthrax     Brucella     VEE          SEB 
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Figure 2. A pseudo-color cluster analysis of genes 
regulated by eight different pathogens at various time 
points.  The figure is arranged to show the changes 
induced by B. anthracis exposure (Anthrax-far left, #1) at 
3 different times of exposure (up to first black line).  
Plague exposure was carried out at 4 different time 
periods (group #2), and so on as indicated at the top of 
the graph (through #8, Cholera toxin).  Increased  (red) 
or decreased (green) gene expression is illustrated for 
each pathogenic agent at from 3-5 different time lengths 
of exposure 

 
 

Figure 3. Genes that are expressed below the 
background levels in the control untreated samples and  
are up regulated by one or more pathogens.  That is, 
these genes were hardly detectable in control cells from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

diverse donors, but upon exposure to pathogens, these 
genes became massively overexpressed and the change 
in expression levels would be clear and could be part of 
an algorithm for eventual future use.  Similarly, we 
wanted to identify genes that were expressed at 
reasonably high levels in the normal healthy individuals, 
but were turned “OFF” upon exposure to biothreat 



agents.  CD markers on lymphocyte subsets is a good 
example of this scenario and may indicate sequestration 
of certain subsets of cells.. 
 
3.4  Demonstration of specificity of the ‘ON/OFF’ 
genes 
 
We used Real time-PCR to validate this approach for 
some of the genes that were turned ‘ON’ upon exposure 
to a pathogen (Figure 4 a-c).  By selecting some of these 
specific genes from the cDNA microarrays and re-
evaluating them using real time PCR, we were able to 
identify genes that were barely detectable in all the 
control samples (very low copy number) and were highly 
expressed when cells were exposed to a pathogen.  These 
particular genes were unique for certain pathogens and 
were expressed only when cells were treated by that 
pathogen.  No expression was detected for these genes 
when cells were exposed to other pathogens.  We 
anticipate that ~10-20 such genes would be needed to  
completely identify each pathogen.  
 
      
Fig. 4A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4C 
 

 
Data mining and mechanistic studies 
We developed tools for data mining and biological 
interpretation of the meta data.  One of the tools, 
PathwayScreen, provides a high throughput pathway 
analysis for genes regulated by certain pathogen.  It 
captures a list of LocusLink ID numbers for the genes of  
 
 
Figure 4. Example of genes turned ‘OFF’ in control  
samples that become massively turned ‘ON’ upon 
exposure to pathogen.  Real time-PCR of genes that were 
solely expressed in PBMC treated with the cholera toxin  

3.5 Functional Genomics:  Data Mining/Mechanisms 
 
We developed tools for data mining and biological 
interpretation of the meta data.  One of the tools, 
PathwayScreen, provides a high throughput pathway 
analysis for genes regulated by certain pathogen.  It 
captures a list of LocusLink ID numbers for the genes of  
interest and outputs a file listing the pathways that those 
genes are in and a link to any appropriate pathway 
database, namely BioCarta.com. or KEG. 

Pathway A few specific key Genes Locus 
Name in this pathway Link ID

Dentritic Cell Intercellular Adhesion Molecule 1 3383

  CD8 Antigen 925

  alpha Polypeptide (pCD4 antigen) 920

T Cell Surface  Lymphocyte-sp Protein tyr kinase 3932

    Markers     

CTL Mediated  Intercellular Adhesion molecule1 3383

  Apoptosis CD8 Antigen 925

  Gamma Polypeptide Antigen 917

CTL Surface  T cell receptor β locus 6957

Molecules T cell receptor α locus 6955

T Cell Co- Ls-specific protein Tyr kinase 3932

stimulatory  Zeta chain TCR protein 7535

signal Ls-specific protein Tyr kinase 3932

Cell Signalling   PKC β1 locus 5579

 Pathway  PKC α 5578

  Mitogen activated Prot Kinase 3 5595

Cell Transcrip alpha Polypeptide (pCD4 antigen) 920

Factors Gamma Polypeptide Antigen 917

  CD8 Antigen 925

   Many other pathways have been defined in BioCarta & KEGG 
Figure 5a.  When PathwayScreen is applied a list of 
genes, a tab delimited text file report is created and can 
be accessed using any spreadsheet program. This file 
contains the names of the pathways the genes are 
included in, the url where these pathways can be viewed, 
and the genes from the original list that are in the 
pathways – both the gene names and the gene Locus ID 
numbers are included as shown in the examples above   
 
When the list of gene showing changes is established for 
each study, they are imported into Pathway Screen and 
each gene (about which functional details is known) is 
assigned a mechanistic pathway using the BioCarta 
database.  Gene Spring has a similar output relating to 
the metabolic pathways in KEGG.  BioCarta pathways 
usually relate to biochemical rather than strictly 
metabolic pathway cascades.  An example of such a 
BioCarta pathway (Figure 5b) details the regulatory 
mechanisms for Angiotensin Converting Enzyme (ACE-
1).  The corresponding RNA for ACE-1 was remarkably 
upregulated for in vivo studies of lethal shock induced by  
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Figure 5b.  Angiotensin pathway from BioCarta 
containing the gene responses observed upon challenge 
of piglets with SEB.  Near the top left corner is the 
Angiotensin 2 receptor (AT2) interacting with 
Angiotension II (AGT II) and under it is a “bar” that 
consists of 5 segments (1 segment for each time period).  
For AGTII, the first 3 time periods (2, 6, 24h) show 
upregulation (red), data for the 4th time period (48 h) is 
missing (grey) and the last segment (72 h) is also 
upregulated (red).  Each major component of the 
pathway has these segmented “bars” under the name of 
the mediator.  As illustrated in the lower left corner, the 
eventual action is blood vessel constriction. This is a 
major problem for lethal shock, since at one point, 
attempts to increase blood pressure result in hemorrhage 
into the tissues leading to multi-organ failure and death.  
Establishment of biochemical pathways such as this 
provides a frame of reference to use for designing new 
therapeutic strategies for specific stages of the illness.   
 The reason this pathway was of interest to us 
relates to our observations of the genes showing altered 
regulation prior to the onset of severe vascular leakage in 
a model of lethal shock induced by SEB (Figure 5b).   
Another tool we developed, GeneCite, offers a high 
throughput query of the PubMed database for citations 
using search terms taken from an input file (i.e. the list of 
genes). Due to the limitations of the Excel spreadsheet, 
just 200 genes of interest can be searched 
simultaneously. The output file is a spreadsheet with the 
gene names in the first column and the number of 
citations is in the next column (Fig.6).  There are three 
ways we can use GeneCite.  a) The first is a simple 
unrestricted search of the literature to see what may be 
known about each specific protein. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For those about which little is known, this 

approach could be useful.  b) The second use is to 
attempt to sort based on function and for that approach, 
we have developed lists of clinical descriptions related to  
the course of illness induced by the pathogen.  For 
example, several biothreat agents eventually produce 
devastating effects by leading to lethal shock.  Therefore, 
we developed a list of 65 search terms related to lethal 
shock, such as the 4 terms shown in Fig. 6, columns 2-5. 
Some of the other terms in that search strategy include 
capillary dilation, fibrin, DIC, ischemia, vascular 
leakage, etc.   As is shown in Figure 6, the number of 
“hits” is recorded and a mouse click on that number 
brings up the list of publication titles, abstracts and 
PubMed links in which each gene/protein of interest has 
been previously characterized in relation to the search 
term.  In cases of many hits, that information may be 
intuitively known but for those genes for which there are 
few publications, this has already helped immeasurably 
to begin to correlate alteration in gene expression (with a 
clue as to the protein’s function) along a time line related 
to clinical manifestations of the illness.  Functional 
genomics approaches provide incredibly rich information 
that can potentially produce diagnostic markers of 
impending illness at a time frame early enough to initiate 
appropriate treatment.  For unidentifiable pathogens 
(natural or deliberately altered pathogens) it could be 
possible to track the functional characteristics of host 
responses in order to predict onset of clinical 
manifestations.   Clearly, new therapeutic targets could 
also be identified.   c) Another use is to search for a list 
of genes against itself (200 x the same 200 genes) in 
order to discover correlations that are not well-know or 
well characterized. This has provided a multitude of new 
information that was obscured in the literature and has 
helped to expand the biochemical pathways now 
described in BioCarta and KEGG.  



A few genes from a  Terms defining aspects of lethal 
GeneCite search shock (4 of 65 used for searches) 

GENES Edema 
Micro-
emboli 

Infiltra-
tion 

Lethal 
shock 

Cytokine 
inducible SH-2 0 0 0 0
Lymphotoxin Beta 1 0 9 0
Lymphotoxin β 
Receptor 1 0 5 0
Protein 
Regulator of 
cytokinesis 1 0 3 3 1
LPS-induced 
TNF-α factor 10 7 48 65
TNF receptor-
associated factor -1 0 0 1 0
Janus kinase 1 0 0 1 0
bradykinin 
receptor B2 47 0 10 0
PI3 Kinase 6 1 3 0
Ubiquitin 
associated prot 3 0 6 2
Phospholipase A2 263 54 67 8

Figure 6.  A small portion of a screen shot of the output 
files produced after applying GeneCite in which lists of 
up to 200 genes were searched against 65 terms relating 
to aspects of lethal shock.  .   
3.6  Supplementing in vivo data with in vitro studies 

In vitro studies provide a potential wealth of 
information, but eventually we need in vivo confirmation 
of experimental findings.  In our current studies, we have 
amassed data to differentiate host gene expression 
responses among numerous biological threat agents 
using peripheral blood mononuclear cells (PBMCs) to 
create a record of exposure to pathogenic agents.  We 
first carried out those studies in vitro, exposing human 
PBMCs from healthy blood donors to various biological 
threat agents and analyzing the gene expression changes 
elicited by the threat agent using cDNA microarray 
technology.  We then confirmed the gene expression 
patterns, analyzing PBMCs from NHP exposed to B. 
anthracis, SEB or other pathogens (Das et al., 2002; Das 
et al., 2003).   However, one must consider the need to 
characterize the effects of exposure variables including 
different doses and exposure times, such that the 
demands on the use of NHPs are impractical, thus 
necessitating the exploration of an alternative animal 
model.  

To pursue studies on therapeutic intervention in 
SEB intoxication, an ideal animal model would express 
the same pathologic symptoms and responses (e.g., 
emesis, diarrhea, hyperthermia, shock, neurobehavioral 
symptoms, death) as humans/monkeys to SEB 
intoxication at reasonably comparable doses, but also be 
relatively inexpensive, easy to handle and manipulate, 
and have specific reagents available for molecular 
analysis (Jett et al., 2001).  Although the spectrum of 

response of monkeys to SEB is similar to humans, they 
are expensive and difficult to handle, compromising 
experimental design, and measurement.  On the other 
hand, mice are easy to handle and cheap, however, three 
models based on mice have the disadvantage of requiring 
pre-sensitization, and the spectrum of response in the 
mouse models is not the same as humans.   

We have developed a model of SEB-induced 
lethal shock using piglets.  Piglets are also reasonably 
inexpensive and the experiments require simple housing 
for short intervals during the experiment.  They are 
locally available and are routinely delivered from a 
USDA approved facility.  Swine models for 
hypovolemic shock and other cardiovascular disorders 
have been well-studied for decades.   

   Our studies with SEB-induced lethal shock in 
piglets shows that their clinical responses and pathology 
closely correlate with those same parameters as 
characterized in NHP models (Mattix et al., 1995). 

Although the use of DNA microarray 
technology for the study of gene expression in piglet 
tissues is certainly informative, several concerns are 
apparent that do not exist for tissue cultures. Even 
genetically identical organisms housed under the same 
conditions are likely to have a different hormonal milieu. 
The state of the immune system and the degree of 
inflammatory activity can cause global changes in gene 
expression from piglet to another. This is mostly 
problematic in studies involving toxic shock or stress 
responses.  We have determined gene expession profiles 
in normal healthy piglets to establish a baseline 
(Hammamieh et al., 2003). 

Microarray data from both in vitro and in vivo 
conditions in piglets were analyzed and genes were 
clustered to show patterns of expression.  We applied 
ANOVA to determine genes that show differences in 
expression patterns between in vitro and in vivo 
experiments with a p-value <0.05.   

Principal component analysis was conducted 
using these genes, showing that the in vivo and in vitro 
conditions are distinguishable when this set of genes was 
used (Fig. 7a).   

We applied a class prediction method where the 
algorithm learns from gene expression patterns in SEB in 
vitro  training set. This algorithm determines best 
predictor genes using the training set which can be used 
to predict test samples using the k-nearest neighbor 
algorithm. We then examined how well the algorithm 
discriminated SEB among other toxin treatments in the 
test data set that was composed of SEB in vitro, SEB in 
vivo, cholera toxin, and botulinum toxin. We were ableto 
identify a subset of genes that correctly predicted 5 out 
of 7 in vivo SEB treatments to be SEB when compared 
to other toxins. We applied Principal component analysis 
using this subset of genes; Figure 7b shows no 
distinguishable difference between the profiles.  

 



 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7a. Principal component analysis for genes dif-
ferentially expressed between in vivo and in vitro.  
ANOVA was carried out to identify genes that exhibited 
differences in expression between in vivo and in vitro 
upon exposure to SEB. 
Figure 7b. Principal component analysis for genes that 
showed similar expression patterns between in vivo and 
in vitro.  This list was obtained by eliminating the genes 
that exhibited differential expression between in vitro 
and in vivo. Thus, these data indicate that pathogen pro-
files derived from expression analysis of less than 1200 
genes, regardless of the in vitro or in vivo source of data, 
can be used to discriminate SEB from other pathogens.  

 
4. CONCLUSION 

State of the art biotechnology approaches re-
quire serious issues to be addressed in management of 
massive datasets that are produced in the course of the 
studies, as well as analysis and mining of the informa-
tion.  Our laboratory has focused of utilization and modi-
fication of existing software as well as development of 
specific software to aid in data mining efforts and other 
specific needs.  Development of predictive mathematical 
modeling simulations to relate bioinformatics findings 
with courses of illness progression in lethal shock offers 
important opportunities for data mining, but primarily 
provides a framework whereby projections for multiple 
parameters can be made for many biological threat 
agents.  

We have identified host gene expression pat-
terns that can discriminate exposure to various biological 
threat agents. Each of these gene patterns regulated by a 
specific agent reveals the cascade of events that occurs 
after the host encounters a pathogenic agent.  Even 

though these pathogens initially cause similar symptoms, 
such as malaise, fever, headache, and cough, the course 
of illness induced by each of them differs in time frame 
of illness patterns.  Using these signature gene profiles to 
assess possible exposure to pathogenic agents or to dif-
ferentiate them from non-lethal illnesses when the classi-
cal identification of a pathogen is not conclusive may fill 
a gap in the arsenal of diagnostic tools.  

In the case of an outbreak, it is not easy to iden-
tify uninfected control patients.  It is very important to 
identify markers that are signature for each pathogen 
without the need for a control to normalize to.  We iden-
tify genes that are not expressed in the base line and are 
expressed at high levels in treated cells.  Using high 
throughput gene expression analysis along with the 
proper classification and feature selection algorithms we 
are able to determine signatures for some of the biologi-
cal threat agents that can be used to develop a diagnostic 
tool for these agents.  Rapid detection, before the symp-
toms appear or even at various stages of illness, offers 
the opportunity to initiate appropriate treatment. Fur-
thermore, this technique may provide the means to iden-
tify new therapeutic approaches to ameliorate the devas-
tating results of these pathogens.  
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